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A generalized eddy-viscosity function vT, is introduced in order to express the 
Reynolds stress in an incompressible dusty gas as a linear combination of the 
Kronecker and rate-of-strain tensors. On the basis of Saffman’s dusty-gas model a 
transport equation for the eddy viscosity is derived from the general turbulence energy 
equations, thereby introducing two additional functions, the specific turbulence 
kinetic energy El ,  and a scale variable s. I n  order to  determine the three variables 
modified Prandtl-Wieghardt relation among them is accepted and a transport equa- 
tion for s is postulated in the same manner as in the clean-gas turbulence transport 
model (firstly proposed by Harlow & Nakayama 1967) but with the inclusion of an 
additional term accounting for the dust particles stabilizing action. We are considering 
values of loading (mass ratio of particles) of order of unity, with particle/gas density 
ratios of order of lo3 and volume concentrations of the order of , so that particle- 
particle interactions are neglected. Supposing that the particles nearly follow the gas 
motion, following well a t  large scales and poorly at  small, an application of the theory 
to problem of numerical calculations of the dusty-gas parameters such as mean 
velocity profile of turbulent pipe flow is given. 

1. Introduction 
The observation that adding dust to air flowing in turbulent motion through a pipe 

can reduce the viscosity by as much as 40 yo compared with the clean gas, has been 
reported by Sproull(l961). Saffman (1962) proposed a model of this phenomena and a 
system of equations describing the motion of a gas carrying a little amount of small 
particles. He investigated the behaviour of infinitesimal disturbances of a steady 
laminar flow and he came to some preliminary conclusions concerning the stabilizing 
action of dust particles. In  1967 Harlow & Nakayama developed a very successful 
analytical theory of the one-phase incompressible turbulence transport. The success 
of their theory is due to the excellent mathematical and physical treatment of the 
classic hydrodynamical closure problem with a minimal introduction of empirical 
relationships. Our principal suggestion is that the approach by Harlow & Nakayama 
(1967), which proved to be a satisfactory characterization of the turbulence motion 
of a clean gas, could be applied to the problem of dusty gas motion as well. In  the 
present paper we use their method to find more general transport equations for the 
case of dusty gas flow having as a starting point Saffman’s dusty gas model. Finally, 
an application of the general theory to the problem of the influence of turbulence 
characteristics on the mean velocity profile of turbulent pipe flow is given. The dusty 
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pipe flow equations are solved numerically and the results are compared with the 
known solution for one-phase pipe flow. 

2. The energy transport equations 
Let us assume that Saffman’s dusty-gas model is completely acceptable as a de- 

scription of the incompressible gas carrying small solid particles. Accordingly, the 
derivations are based on the following set of equations: 

avi avi K 
-+v.- = --(v i -ui). 
at axj m, 

In equations (2.1)-(2.3), 
ui (xj, t )  are the gas velocity components; 
vi (xj, t )  are the solid particles (dust) velocity components; 
p ( x j ,  t )  is the unknown pressure field; 
p = const. is the gaseous mass density per unit volume; 
m, = $T R:p, is the mass of a single spherical dust particle of radius R,; 
ps = const. is the density of the material in the dust particles; 
v = const. is the molecular kinematic viscosity; 
K = 6 n R p  by the Stokes drag formula; 
N = const. is the number density of dust particles. 

It is supposed that the dust particles are uniform in size and shape and that their mass 
concentration (loading) 9 _= m,N/p is of order unity (for common materials 
ps/p - lo3 so that the bulk concentration of particles $71 R:N is of order 

The field variables ui, vi and p / p  are split into mean and fluctuating parts: 

I - ui = Ui+Ui#, 

vi = Zj+Vi’, 

p/p = P = B+P, 

so that, by definition, 
readily obtained from (2.1)-(2.4) in the following form 

= 7 = = 0. The equations for the mean flow field are 

(iii - Zi), -++,-+-u.Iu ’f- = v--- 
at ax, ax, 

aii, - aii, a - aP K N  
ax, ax; p z k  (2.5a) 

( 2 . 5 b )  

( 2 . 5 ~ )  
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while subtraction of ( 2 . 5 a )  and (2 .5b )  from (2 .1 )  and (2 .3 )  respectively leads to the 
equations for the fluctuating dusty-flow velocities and pressure fields components : 

(2 .6b)  

As it is seen from ( 2 . 5 ~ )  the influence of the turbulence momentum transport upon a 
mean velocity profile iii is described by the Reynolds stress tensor uiu;. Our purpose 
here is two fold. On one hand, to obtain some information concerning the time-space 
evolution of this tensor from the relevant transport equation. On other hand, to find 
the influence of the dust particles on the reduction of turbulence momentum. Multi- 
plication of ( 2 . 6 a )  by ui, averaging and adding the same relation with interchanged 
indices leads to the result 

- 

a- - a -  - au - , azi 
-uu;u;+u - u u ; u ; + u ; u ~ ~ + u ; u  - 
at axk ax, kaxk 

wherezm m,N/p. 
In the same manner an equation describing the time-space evolution of the tensor 

&(u;v;+u;v;) may be deduced from ( 2 . 6 ~ )  and (2 .6b ) .  It is obvious - that the mutual 
gas-particle correlator (which appears in (2 .7 ) )  depends on the uiui correlator and 
on higher-order terms of the correlation as well. Let us assume that the solid particles 
follow fairly well the mean (large-scale) motion 

- -  

(2 .8 )  
- -  ui = v. 

although they do not follow the high-frequency stochastic oscillations of the gas 
flow,i.e. 

a )  

- -  - 
g(u;v;+v;u;) < uiu;. (2 .9 )  

We consider further the 'relaxation time' of the dust particles mJK (the time which 
they need to adjust to changes in the gas velocity) as being much greater than the time 
scale of the most unstable disturbance, 

mslK 9 L/um ( 2 . 9 a )  

(here L denotes the length scale and urn is the velocity scale of the mean flow field). In 
these circumstances the relation ( 2 . 9 )  will be satisfied. 

In reality there are various physical mechanisms controlling the interaction be- 
tween the solid particles and the driving gas flow (see, for example, Owen 1969). But 
from a mathematical point of view it is obvious that after the assumptions (2 .8)  and 
(2 .9)  the dust-particles motion equations (2 .5b )  and (2 .6b )  should not be used in the 
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formal derivations. Thus the only equation which should be considered in order to 
describe the turbulence transport of the dusty-gas Aow is equation (2.7).  

The basic assumption concerning the Reynolds stress itself is the same as firstly 
proposed by Harlow & Nakayama (1967) : 

where eii is the symmetric rate-of-strain tensor 

(2.10) 

(2.11) 

vT is the kinematic eddy-viscosity coefficient, 

El = + ( u ; ) ~  (2.12) 

is the local instantaneous specific kinetic energy of turbulent fluctuations. Thus the 
problem of obtaining an equation for the mean dusty-gas dynamics reduces to that of 
finding El and v T  as functions of position and time. From (2.7) after contracting the 
indices and inserting (2.10) we get 

a -  

where (2.14) 

is the characteristic time scale for the rate of mean turbulence energy attenuation due 
to gas-elementsolid-particles interaction. By analogy with the Harlow & Nakayama 
( 1967) consideration of the rate of dissipation of turbulence energy due to molecular 
viscosity v, we write 

2Av - 
v (z)z = &31, (2.15) 

where the dimensionless function A is written in the form 

A = p(l +Sv,/v),  p = const., S = const., (2.16) 

and the variable s is introduced as a measure of the eddy-size scale appropriate to the 
dissipative process under consideration. It is convenient to introduce a slightly modi- 
fied Prandtl-Wieghardt relation among the three variables El, vT and s 

(2.17) 

where the constant y is expected to be near unity. Continuing the development from 
(2.13) we represent the turbulent diffusion of the two scalar quantities E;  and P’ by 
the following flux approximations 

(2.18) 

(2.19) 
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in which CI, 8 a.re universal dimensionless constants of order unity in magnitude and 
y is introduced in accordance with ( 2 . 1 7 ) .  

After all these developments ( 2 . 1 3 )  becomes 

s4 7s=. 
( 2 . 2 0 )  

Combining equations ( 2 . 8 ) ,  ( 2 . 1 0 )  and ( 2 . 5 ~ )  and omitting bars for the dynamics of 
mean flow of dusty gas we get 

( 2 . 2 1 )  
aui aui a 
at 

- + u k -  = -- 

On the basis of simple physical considerations Harlow & Nakayama ( 1 9 6 7 )  sug- 
gested the eddy-size scale transport equation to be constructed by equalizing the 
sum of terms representing the mean flow convective transport, the viscous and 
turbulence diffusive transports to  the sum of the appropriate source terms. The 
latter are written in analytical form and contain some dimensionless universal con- 
stants. The numerical values of these constants are chosen in such a way that the best 
fitting of the analytical theory and the known experimental data (Batchelor & 
Townsend 1948;  Reichardt 1951)  to be achieved. Without reproducing their theoreti- 
cal reasoning, just including by an analogy an additional source term 

( 2 . 2 2 )  

with C as a universal dimensionless constant and r defined by ( 2 . 1 4 ) ,  we postulate the 
following scale transport equation for dusty-gas flow: 

- + u  ( v + $ v T ) -  at ,axk as ax, " [  ax, as 1 as 

Here the functions F(5)  and g ( f )  (5 = v T / u ) ,  as given in the paper of Harlow & 
Nakayama ( 1 9 6 7 ) ,  are equal to 

F ( 5 )  = 3 f I  (5) +fi  (5L ( 2 . 2 4 )  

( 2 . 2 5 )  

with fi (0 and f 2  (5) are defined from 

( 2 . 2 7 )  

Xi, X2, t1, t2, t3, m, n being constants. Their typical values will be discussed further. 
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3. Turbulent pipe flow of dusty gas 
As a trial application of the general theory given in previous section let us consider 

a fully developed steady turbulent pipe flow of dusty gas with both gas and solid 
particles mean velocities having only longitudinal components. With respect to a 
cylindrical co-ordinate system (t, #,<) with < measured along the pipe axis it means 

v = u = ( O , O ,  u ( r ) ) .  ( 3 - 1 )  

For fully developed pipe flow the kinematic eddy-viscosity coefficient vT and the 
scale variable s, being functions of r co-ordinate only, satisfy equations ( 2 . 2 0 )  and 
(2 .23)  in the following simplified form: 

In these equations r is the distance from the axis of the pipe, the wall being at  7 = R. 
With h denoting the constant pressure gradient, the r and 5 components of equation 
(2 .21 )  become %[.+$I a = 0, 

( 3 . 4 ~ )  

(3 .4b )  

The equations (3 .2 )  and ( 3 . 3 )  can be combined with equations (3 .4a ,  b )  and written in 
the following dimensionless form 

where 

S 
2 = - *  K = vh-*R-*, 23 = 12nR2RSN. (3 .7 )  

From (3 .4b )  and ( 3 . 7 )  it  is clear that the dimensionless parameter K is related to the 
Reynolds number Re,  = Ru, , , / v  for laminar conditions (5 f 0 )  by means of 
(Re,)-* = 2 ~ .  The coupled ordinary nonlinear differential equations ( 3 4 ,  (3 .6 )  are 
to be solved subject to the boundary conditions 

28 al=a-- ,  T = R ~ ,  [ = 2  
3Y v ’  R ’  

‘I d t / d x  = d z / d x  = 0 at x = 0, 

5 = z = 0  at x = ~ .  J 
(3 .8 )  

The source functionsf,(E), fi(<) and q(g) which appear in equation (3 .6 )  were defined 
by relations (2 .24) - (2 .27) .  The solution of equations (3 .5 )  and (3 .6 )  was found in 
numerical calculations by use of Runge-Kutta method. The most values of dimension- 
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less constants introduced in previous section was taken into consideration following 
Harlow & Nakayama (1967), which have reported satisfactory agreement of their 
numerical results and experimental data. Namely, 

a, = 1, y = 2,  p = 5,  s = 10-2, 1 ~ .  = I ,  K = 4.83 x 10-5, 

g = 4 x  lo-,, 5, = 7, f ,  = C3 = 100, m = n = 2 ,  

Sf, = 7-5, Sf, = 0-002 or 0.0005 

in addition to 

were used. 
It is worth to  remind here, that the 9 value in the present model is accounting for 

the influence of solid particles on turbulence transport in a bounded gas flow: in 
particular, the results of Harlow and Nakayama 1967 refer to 9 = 0, but in the experi- 
ments of Sproull 1961 lo2 < $2 G 5 x 103. It should be noted that the conditions (3.8) 
give us the quantities of the functions z ,  [ and their derivatives in respect of x in 
different ends of the interval ( 0 , l ) .  For this reason the integration started at  x = 0 
for a set of to = f ( x  = 0) and zo = z(x  = 0) was repeated for other to, zo so that by 
variation of to, zo to find the appropriate set, resulting in z( 1 )  = f (  1)  = 0. In  fact this 
variation stopped if z ( ~ ) ~ ~ ~ ~ ~  < 0-05 zo, f(xpinal) < 0.05 z,, for 1 - xfinal z because 
at  x -+ 1 the derivative f’(x) becomes extremely large and small variation of to, z,, lead 
to the substantial changes in final 5, z .  

The numerical calculations were performed for six values of the dusty parameter 
9 ( 0 ;  0.1; 1; 10; 10,; lo3) and threevalues of universal constant C (0.1; 1 ;  10). Variations 
of f and z as a function of x are shown on figure 1 for two different 23 values (1 and 
lo3). The form of f ( x )  is the same as that curve derived by Harlow & Nakayama (1967), 
but the addition of dust (the increase of 9 from 1 to  lo3 a t  X, = 0-002 and G = 1 )  
leads to decrease of eddy viscosity by as much as 20 yo in the core of turbulent dusty 
flow (x z 0) and less than 1 % in the boundary layer (x z 1). The dependence of the 
kinematic eddy viscosity coefficients t o ( [ ( x )  a t  x = 0) upon the $2 parameter is demon- 
strated on figure 2 for several values of constant C and two values of X,. The same 
dependence for the eddy size scale zo ( z ( x )  a t  x = 0) is shown on figure 3. It is seen from 
these figures that the numerical experiment with reduction of X 2  from 0.002 to 
0.0005 results in substantial reduction of 5, and zo in the whole interval 0 6 9 < lo3 
and thus the value XL = 0-0005 does not square with Harlow & Nakayama descrip- 
tion of turbulence transport. It is important to note that appreciable reduction of 
eddy viscosity coefficient and size scale is achieved only if 9 is sufiiciently high 
(9 2 1 0 2 ) .  This conclusion is confirmed also by figure 4, which illustrates the increase 
of the mean velocity a t  x = 0 as a function of the 9 parameter in qualitative agreement 
with Sproull’s (1961) observations. 

o G 9 G 103, 0.1 c G 1 0  (3.9) 

4. Discussion 
The picture of the turbulence transport in an incompressible dusty-gas flow emerging 

from the conceptual model proposed is the following: A turbulent motion which 
changes in time much more rapidly than the mean fluid motion extracts energy from 
the mean shear flow and the turbulent transport of several mechanical quantities may 
be represented in appropriate flux approximations. It is supposed that for solid 
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FIGURE 1. Variation of 6 and z as a function of radius. C = 1, K,  = 0,002; 
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FIGURE 2. The dependence of the kinematic eddy viscosity coefficient Eo(6(z) at 2 = 0) on the 

parameter D.  - - -, K ,  = 0.0005, C = 10; -, K ,  = 0.002, C = 0.1, 1, 10. 
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FIGURE 4. Mean velocity u = G(z = 0, D+O) as a funct,ion of the D parameter. 

particles uniformly distributed in the gas volume the absolute value of the mutual 
correlator of the gas element and the solid particles fluctuational velocities is much 
less than the Reynolds stress tensor for every pair of indices i, j and at all space-time 
points. The result is a pair of transport equations for the turbulence energy and scale, 
together with a relationship among these variables and the eddy kinematic viscosity 
coefficient. On the basis of the model proposed the phenomenon of turbulent drag 
reduction due to a small amount of solid particles appears most easily explained as 
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being caused by: firstly, the dissipation of turbulence energy due to the time lag 
between acceleration of a gas element and its inertial reaction and secondly, the 
additional breakdown of eddy size in the presence of dust. 

The influence of the modified by solid particles turbulence characteristics upon the 
mean velocity profile was investigated by solving the turbulence transport equations 
restricted to dusty pipe 0ow. The numerical study of these equations shows that an 
appropriate choice of the universal constants leads to the reduction of the viscosity of 
dusty gas by as much as 20 % compared with the clean gas. 

Further development of the analitical theory of turbulence in dusty gas flows needs 
more detail investigation of the governing system of equations (2.1)-(2.3) and 
new experimental investigations allowing direct comparison with this and future 
theoretical models. 

The authors acknowledge the helpful participation of Dr B. Stefanov and 
E. Grueva in the performance of numerical calculations. 
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